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O. Introduction. These notes developed from the introductory lectures

of a course given by Prof. Stephen Smale at Columbia University 1962-
1963. As an introduction to the course, Prof. Smale remarked: "Recent
events in differential topology indicate a change of direction is
taking place, away from manifolds and toward differentiable meppings
and analysis. In this course the new direction will be followed, with

global calculus of variations as the main goal."

The first nine sections of these notes follow the lectures closely,
and rely heavily on two basic books, by Dieudonne [2] and Lang [3].
Sections 10 and 11 are adapted from a letter of R. Palais Uﬂ, replac-
ing the equivalent formulation given in the lectures. The remaining

sections follow lectures and a paper by the author [1].

Thanks are due to Profs. Smale and Lang for many valuable sugges-

tions, and to Prof. Palais for permission to use his letter.



CHAPTER I

REVIEW OF DIFFERENTIAL CALCULUS

This chapter presents the basic facts and notations for the deri-
vative of a continuous mapping of Banach spaces. For details and proofs,
see Dieudonne [2, Ch. V, VI, VII and VIII]. Herein, linear spaces are

real.

1. Definition of derivative

Let A be a set, and [F a normed linear space. Then G (4, F) will
denote the normed linear space of bounded functions from A to [F with
the norm, jjufl = ;:i fu(x)['. similarly if A is a topological space

EO(A, F) will denote the normed linear space of bounded continuous

mappings from A to ¢ with the same norm.

1.1. Theorem: If @ is = Banach space, then so are @(A, &) and

e°a, 7).

1.2. Definition: Let E and F be Banach spaces, i = 1,...,n,

and © : || E - @ Then f is bounded iff there exists a positive
i=1
real M such that for all (xl,...,xn) e T E,

Joed, . < w T IR
i=1l



n .
1.3. Theorem: Let f : [] E' > F be an n-linear function.

i=1

Then f is continuous iff it is bounded.

1.4, Corollary: The linear space Ln(lE;(F) of continuous
n
n-linear mappings from TT' E to fF with the norm,

lull = sup  Yu@)| ,
B!

1s a Banach space.

Let E, F be Banach spaces, U < E an open set, f,g : U-> ¥

continuous mappings, and ug g U.

1.5. Definition: The mappings f and g are tangent at u iff the

function

£lu) - g(u)
o) =ﬂ ag(w) |} VN

o - ul

Qu) =0

is continuous at u,-

1.6. Lemma: There exists at most one continuous linear mapping

L : - F such that the affine mapping

a[f(ub),IJ : E-> F :u —aF(uo) + L(u - uo)

is tangent to I at uo.




1.7 Definition: A continuocus mapping £ : U = (F is differentiable

at Uy iff there exists a continuous linear mapping L : [E — [F such tha®
a[f(uo),L] is tangent to f at u_. If f is differentisble at u_, the
unique linear mapping L = Df(uo) is the derivative of f at U If £ is

differentieble at u for all u € U, then f is differentiable on U, and

the function

Df : U-.L(E, F) : u-Df(u)

is the derivative of f.

2. Spaces of differentiable mappings

2.1 Temma: If E and [ are Banach spaces, then

4 ( (E,Ln_l( E, #)) and L-’n( E; ) are canonically iscmorphic Banach
spaces.

Hereafter, these spaces will be identified by this isomorphism.

2.2 Definition: If f : U - {F is a continuous mapping differen-
i-1

tiable on U, and Df = D(D” "f) is continuous and differentiable on U
for i = 1,...,r-1, then the function

D'f :U— L(E, F)

is the rth derivative of f. A mapping f is of class Cr iff its ith
derivative is defined, continuous, and bounded over U for i = 0,...,r.
If A c {E is an arbitrary subset and f : A - F, then fis of clas§_§f_
iff there exists an open set U of ([E containing A and a o mapping
g : Uo [F such that g|A = f. Let CF(A, F) denote the normed linear

space of Cr mappings from A to [ with the Cr sup norm:



r

—ecmae

I£h* = swo 2> |t

u e A i=o

where D°f = £ and HDif(u)” =  sup ]]Dif(u)-vH for i > O.
o lt =12

2.3 Theorem: If U is an open set of a Banach space, then (v, F)

is a Banach space, for O < r < =,

2.4 Theorem: If U is an open set of a Banach space, T € @r(u, iF),

and u € U, then Drf(u) is a symmetric r-linear mapping.

2.5 Theorem: If U is an open set of a Banach space £, the deri-

vative mapping D : (U, F) —afr-'l(U, L (&, F)) is a continuous

linear megpping.

3. Composition of mappings

Let D, B, F and G be Banach spaces, U < {D an open set, and
B: EX F-o & : (e,f) nef

a continuous bilinear mapping. Then a bilinear mapping is induced on

the set of functions:

BU : iEUx g GU : (a,B) = a:B,

where a-B(u) = a(u):p(u).

3.1 Leibnitz Formula: If a € fl(U, E) and B € 61(U, F), then

ap € t?l(U,e;), and

D(a+B) = D+ B + a+DB .



The proof consists of a standard argument on the difference

quotient and is omitted. The formula is easily extended to multilinear

mappings.

3.2 Notations: Ifa : U-L(E, IF) and B : U - L( F,8), the

compositional product of o and B is the function

Beaw : U-oL(E,EG) : u-B(u) oalu).

If A and B are Banach spaces and a : U— A, B : U-> B, let a & B

denote the direct sum of a and B,
a®B:U-> A6 B:u-aolu) 6 B(u).

Note that the compositional product is induced by the continuous

bilinear mapping

o L(F,6) X L( B, F) > L( B,6) : (T,,7) » T, o T,

2

vhile the direct sum is induced by the continuous bilinear mapping
® :AXB->A®B : (a,b) »a @ b.

Thus Leibnitz' formula applies in each case.

Let U € E and V C F be open sets of Banach spaces and & a Banach
space.

Let p and k be positive integers, p > k, and (il,...,ik) a k-tuple
of positive integers satisfying
(i) il+...+ik=p, and

i1 <io < ... <di,
(ii) 1<14, < <i
Then let the positive integer G£<il""'ik) be defined recursively by

the rules



(iii) 0§ =1, and

. Dy .y _ sl Pl . .
(iv) Ok(ll,...,lk) = 6il or 1 (12,...,1k)
k
N p-1,. . .
+ ;El o (11,...,1£ + l,...,lk),
1 s s 1 .
Where o, =1 1if i, =1, &, = O otherwise.
i 1 i

3.3 Composite Mapping Formula: If f € Tfp(U,V) and g € f?P(V,G),

then g o £ ¢ CP(U,6) and

M

D°(g o 1) = (0 o £)-2P 1,
k=1
where
- i i
P _ P/. . 1 k
P X f = ‘ ;i_ o k(11,...,1k)D f® ... @D f.
...+l =p

1 S 11 S e S 1k

The proof, a straightforward induction on p which uses Leibnitz'

formula for the compositional product and the direct sum, is omitted.

Iff:U->Veandg: V@ let af(g) denote the composite

gof :U- @

3.4 Theorem: If f : U-V is a class Cr, then

ap C¥(u,q) - €%(U,6) is a continuous linear mapping.

Proof. The linearity of mf is obvious, and we prove continuity

. 1s bounded.

by induction. If r =0, we have |la.(g)| o < “gl\o, 50 a,

For the induction we have



(€8]

flop(@lll . < [la()li .y + [ID7(g 0 £)i.

Suppose {|gl} , = 1. Then the first term on the right is bounded by
hypothesis and the second term has a bound which may be computed from

. r
the composition mapping formula, 3.4. Thus xp is continuous in the C

topology.

If g: UXV->8&, and (u,v) € U XV, we may consider the partial

1]

maﬁpings &, g|{u} X V and g, = glU X (v}, and the partial derivatives

2 = o2 s .
Dig(u,v) D'gl(‘v) and Deg(u,v) —- D gv(u).

3.5 Definition: A mapping g : UX V —» G 1§ of class (Ci s CZ)

iff the mappings

DYg : UXV—-)L?( E,6)

and
DIt UXV —>L‘51( F,G)

are defined, continuous and bounded over U X V for 0 < p <r and 0 < q < s.

1

3.6 Theorem: A mapping g : UX V -G is of class ¢’ iff it is
11

of class (Ci, C;), and in this case

Dg(u,v)-(e,f) = lg(u,v)-e + D2g(u,v)‘f.

For the proof, see Dieudonne [2 De 167].

It is clear that in the above the open sets U and V may be
replaced by arbitrary subsets A and B.

Ifg: AXB->Gand f : A-B, let Qg(f) denote the composite

g o graph (f) : A > €.



\O

3.7 Theorem: If K < [E is compact, V <« ¥ open, and

g : KXV -4 is of class (Ci, Cg+s), 0<s<r, then

Qg : €Y(K,V) » €T(K,8) : £ > Qg(f) is of class C°.

Proof. TFirst we take s = O and proceed by induction on r. For
r = 0 the proof follows at once from the continuity of g and the com-

pactness of K. The induction is evident from the inequality

o (e) - a (el . < Yo (8) - o (£,

r-1 r-1
+ ||n(D Qg(f)) - D(D Qg(g))l

and the continuity of D, 2.5. For arbitrary s. < r, a simple compu-

tation shows thatp®Q = © g 2 SO by the case above, r = s = O, DSQg
Dg

is continuous.

This theorem admits a simple specialization which is dual to 3.D.

Ifg:B-o>%and £ ¢: A - 3B, let wg denote the composition g o £ : A — G,

3.8 Corollary: If X < (E is compact, V C  open, and

+
g e ©7%(v,6), 0<s<r, then 0yt ST(K,V) » €Y(K,6) is of class C°.
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CHAFTER II

BANACH MANIFOLDS AND BUNDLES
This chapter contains the basic definitions and theorems of
differentiable manifolds modelled on Banach spaces. For details and

missing proofs see Lang [3, Ch. II, III|.

4, Differentiable manifolds and mappings

Let S be a Hausdorff space.

4,1 Definition: A chart on S is a pair (U,p) where U is an open

set of S, and @ : U —»[E a homeomorphism onto an open set of a Banach
space [E. A ¢’ atlas on S is a collection & = (Ui,wi) of charts on
S such that [Ui} covers S and for a1l i, J,

-1

is a Cr diffeomorphism. Two Cr atlases are Cr equivalent iff their

union is a Cr atlas. A Cr— equivalence class of Cr atlases is a Cr—
structure on S. A C -manifold is a pair X = (S,Q) where Q is a

Cr-structure on S.

Note that if X is a connected C* manifold then all defining
Banach spaces are equivalent by a continuous linear isomorphism,

IEi ~ @, and X is said to be a c*- E-manifold, or to be modelled on iE.

4,2 Definition: ILet X and Y be Cr manifolds and £ : X - Y.

Then  is a C mapping iff there exists an atlas {(Ui,wi)) of X %
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and an atlas ((Vj,wj)] of Y such that for all i, j,

-1 ';1
1 . g . M .
', = wj of o A pUi rE

. V.) —> W, Vv
Ji J) ¥3

is a Cr mepping in the sense of 2,2, Also, f is a Cr diffeomorphism

if £ is a Cr map with a Cr inverse.

T
Hereafter we tacitly assume r > 1 whenever C is written.

4,3 Definition: Let Y be a Cr manifold and X a subset of Y.

Then X is a submanifold of Y iff for every x € X there is a chart

(U,p) of ¥, p € U, and closed complementary subspaces [E, and Eé of

1
E, the target of ¢, such that

o A X) = 9(u) N (= % 0).

Note that if {(Ui,@i)} is a covering of X by charts of Y having
the property sbove, then {(Ui n X, LpIUi ~ X)) is a ¢ atlas for X,

hence:

4.4 Theorem: If X « Y is a submanifold of Y, then X has a

Cr structure such that the inclusion i : X - Y is a Cr mapping.

Hereafter submanifold means the Cr manifold with such a Cr
structure.

Let X,Y be Cr manifolds and f : X = Y a Cr mapping.

4.5 Definition: The mapping f is an immersion iff it is locally

a diffeomorphism onto a submanifold of Y, an embedding iff it is a
diffecmorphism onto a submanifold of Y, a submersion iff it is "locally

equivalent to a projection": for every x € X there is a chart (U,Q)

(S
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at x and a chart (V,¥) at £(x) such that ¢ : U - U, X U,, a product

of open sets of Banach spaces, and

-1
. ‘ﬂ‘ |
vVofoq@ Ul U2 - ¥(V)

is a projection.

Now let X be a C* manifold, x € X, (U,9) a chart at x. We consi-

der triples (U,p,u) such that u € [E, where @ : U »E and ¢(x) = O.

4.6 Definition: Two triples (U,p,u) and (V,V¥,v) are equivalent

iff D(¥ o Q“l)(Qx)(u) = v. An equivalence class of such triples is

the tangent space to X at x, TX(X).

Note that any chart (U,p) at x induces a bijection between TX(X)
and a Banach space. The Banach space structure thereby induced on
TX(X) is unique up to a continuous linear isomorphism, so hereafter
TX(X) will denote this Banach space.

Let X,Y be c’ manifolds and f : X > Y a Cr mapping. Then rela-
tive to charts (U,p) at x € X and (V,¥) at £(x) € Y the derivative
DV ofo Q-l)(mx) induces a mep T f : TX(X) —an(X)(Y) which is
independent of the charts used. The following theorem is the first
main result in this section, and a proof based on the contraction
mapping lemma may be found in Lang [3].

Recall that closed linear subspace of a Banach space splits
if it has a closed complement. An injection of one Banach space into

another splits if its image is closed and has a closed complement.
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4,7 Implicit Function Theorem: Let X and Y be Cr manifolds,

T :X-»Ya Cr mapping. Then

(a) if Tx f is injective and splits there exists a neighborhood

U of x € X such that £|U is_an embedding.

(b) if T_(f) is surjective and its kernel splits, there exists
= "x

a _neighborhood U of x € X such that £|U is a submersion.

Part (b) has an important consequence, which follows directly from

cefinitions 4.3 and L.S5.

4.8 Corollary: ILet f : X > Y be a ¢ submersion and v €Y.

Then £"3(y) is = submenifold of X.

For example, if Y is a Hilbert space and X < Y is the unit sphere,
then X is a submanifold. For if f : YR : y - (y,y) , then
Df(yl)(yz) = <yl,y2) , 50 £|Y N0 is a submersion by 4.7 (b) and

-1
X =1 (1) is a submanifold by 4.8.

5. Banach bundles

The next goal is to define Banach bundles and show that the union
of all tangent spaces of a manifold is such a bundle. Throughout,
"bundle” shall mean "Banach bundle", also called "vector bundle" by
Leng [3].

The following two notions will be used to define bundles. A local
bundle is a triple (U X @,U,x), where U is an open set of a Banach
space, IE is a Banach space, andt : U X E - U is the projection on

the first factor. Let (U x E ,U,x) and (V X F,V,P) be two local
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bundles. A ¢ local bundle map is o pair (7

,fB) of ¢¥ mappings such
that
f
(1) UXE ————> VX F
1t p
fB
U >V commutes,
(i1) flﬁ-l(u) is a continuous linear mapping for all u & U,
and  (iii) * :U-» L(E, F) :u —>fln_l(u) is a ¢ mapping.

5.1 Definition: A C' Banach bundle is a triple x = (X,Xg,%),
in which X and XB are Cr manifolds and n ¢ X —>XB a Cr mapping, such
that there exists an atlas [(Ui,mi)] of Xy end a collection of mappings

(wi} satisfying:

(1) v, ﬂ-lUi - ¢,U, X E,, a local bundle,
(ii) {(n—lUi,Wi)} is an atlas of X, and
(111)  for all 1,3, (v, o w;l,@j o @{l) is a ¢* local bundle map.

The charts (n_lUi,wi) are local bundle charts. Then X is called the

total space, X, the base and n—l(x)

T
for x € XB is the fiber over x. Let X > Y
X —aXﬁ and p : Y >Y_ be Cr
B . o
bundles. A Cr bundle map from x to £p
p is a pair (f,fB) of ¢* meppings xB > Y5

such that the diagram commutes, and
such that the mappings of local bundles induced by f through local

r .
bundle charts- cre ¢ locol bundle maps.



15

Now let X be a manifold, T(X) = < Iy T_(X), and
< PiS

T : T(X) »X : TX(X) - X.

+
5.2 Theorem: If X is a o . manifold, then 7 : T(X) - X has a

Cr bundle structure.

The next goal is the space of cross-sections of a bundle. Let

nt : X —»XE be a Cr bundle.

5.3 Definition: A section of n is a Cr mapping 7 Xﬁ - X such

that n o 7 is the identity of XB.

Let I'(x) denote the vector space of all sections of n with the
linear structure induced by that on the fibers. (Observe that if
x EXE, 7175 € I'(x), then 7l(x) and 72(x) belong to the same fiber by
the section property. )

We shall now define a norm for I'(x) in the case in which XB is
compact. In this case a norm atlas of % is a finite set of L-tuples

k .

a = {(Ki,Ui,cpi,wk)}i=l such that {(Ui,CPi)} is an atlas of X5
{(ﬁ—lUi,Wi)} is a local bundle atlas of X with
’ » - 3 3 .
Y, o lUi -V, X E., K, < U, are compact, and {Ki} is a covering

of XB. If ¥ € D(xn), let 74 denote the induced local bundle section:

-l
= 1\l fo) . r
>i Vi 0 ) [p. CP.K. . (Pihi -—)Q.Ki i !‘E.-

Let Pyt Vi X Ei —aEi be the projection on the second factor. As x
and y are of class Cr, we have p, 07, € ffr(@i,Ki, Ei) which has the

¢" norm || | 4+ Now define

o 7, = fleg ooyl
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end Irll, = N Yl

5.4 Theorem: If g and g’ are norm atlases for m : X —>XB

and XB is compact, then

(1) i I‘a. is a norm for I'(ix)

(i1) il ”q is equivalent to || na, , and

(111)  (D(x), | |, } is a Banach space.

Proof. (i) As * Il "a is a semi-norm on I'(x) and the supremum

of & finite set of semi-norms is & semi-norm, | ||, is a semi-norm.

But [y, = 0 impliesy =0, so | l, is a nom.

(i1) Let a= {(Ki,Ui,qpi,wi))"_kl end
i=

11
a = {(K'.,U'.,Q‘.,l!f‘.)}‘k be norm atlases for n. Let ((X_,U )}N be
SRS S K] O e

N
’Uor,’cPa,’\"Ia,)} P

a common refinement of ((K,,U,)) and {(K',UY)}, 4= ((K
1774 3’73 =1

o8

N
1 — 1 1 . '3 . -
and A = {(Ka’Uor,’ o Vo) }a_l where U < U, implies @ = (piIUor. and
y o= ‘l(] imi ; ' n : .
Vet viln . and similarly for Py, and Vo * It is clear that

I "‘a. = | “,& and || “a_’ = | l ~ » while the new norms are com-
puted over the same coverings. Thus ” n& and “ na’ are equivalent
ire ¢ I “,6- and * I “f’ are equivalent for each a.
Let x_ : (paKa X € -¢ K and “o'b P oK, X IEC'L - (P&.ch,
denote the local bundles. Then if 7 € I'(x), we have the induced
. @
local sections 7 € T'(n ) end 7} € I'(n}). Also (T(x), {l “,& )

“l

and {F(’to'r,)’ “g.’ } are Banach spaces. But 7, and 7 are related by

the equation

-1 -1
— 1 p— 1 1 1
Vo = Foz,(yoc) = 1:[0, © (v/oo) ©7q 0 Py © (Cpa) ’
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and it is clear from 3.% and 3.7 that F, : F(né) —9P(na) is a continu-
our linear isomorphism.

(iii) Completeness follows at once from (i) and (ii).

Next we consider a C' mapping f : X — Y into the base of a C¥
bundle = : F - Y. Let F*(F) € X X F be the set of pairs (x,y) such
£(x) = n(y), £#(x) = £%(F) - X and n*(f) : F*(F) — F the projections

into the first and second features, resp.

5.5 Theorem: With f and n as above, f*(x) is a ot bundle, the

pair (£,%x*(f)) is a C bundle map, and any bundle map into x Pactors

uniquely through £*(x).

6. Exact sequences

Let 7 and p be bundles having a common base X,

and let (fB,f) and (gB,g)‘be bundle maps from 77 to P
with fB = 8y the identity map of X.
6.1 Definition: The sequence O > 5t £ > p is exact iff

for every x € X, flﬂ-l(X) is a splitting injection. The sequence

x —&>p > 0 is exact iff for every x € X, flﬁ—l(x) is a

splitting surjection.

6.2 Theorem: (i) If 0 —> «n EET p is exact, there exist

local bundle charts (:rr-lU,(p,\.'f) and (p-lU,cp',l,’/‘) at x € U< X, with

Vo ﬁ-l U->9@U X [E and V' 3 p'lU'—a®‘U X [E X @, such that the

induced local bundle map f' is a continuous linear iscmorphism of

PU X [E onto @'UX [E X O.
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(ii) If=x £.>p —> 0 is exact, there exist local bundle

charts (n‘lu,cp,qf) and (p_lU,(P',\!f') at x € U ¢c X, with

Vo n-lU-e(pUx E X F and V' :p-lU—acp'Ux E, such that the

induced local bundle map £' is a continuous linear projection with

kernel U X [E X O .

If 0 —> x ——>p is exact, lek D= U  p  x / £(n " x)
xeX
g

and coker (f)= p/n : D> X : p"lx/ f(ﬁ'lx) ~»X Ifnx—=>p—>0

is exact, let G = U ker(f]n-lx) and ker(g) : G- X : ker(flrr'lx)-> X
xeX

6.3 Theorem: (i) If O —> =« L p is exact, then coker (f)

is a bundle.

(ii) If x £5 0 —> 0 is exact, then ker (g) is a bundle.

6.4 Definition: A sequence O > 5t £ o £> 0 > 0 is

exact iff O —> x --f——> P and p _g__> 0 —> 0 are exact and

p / £(x) = ker (g).

6.5 Theorem: (i) If 0 —> = N p is exact, then

0 > 0 —> p £ p/f(n)~>0 is exact, where g is the natural

projection.

(ii) Ifp &> 0 —> 0 is exsct, then 0—>ker(g) +>p E>5—>0

is exact, where f is the natural injection.-
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6.6 Definitions: If 0 —> x L p is exact, it is a split

exact sequence iff there exists an exact sequence p —§—>n'—"h> 0 such

that g o £ is the identity. Let n : E->X and p : F — X be bundles
with E ¢ F. Then n is a sub-bundle of p iff O —> =« —-i—-> p is an
exact sequence = ° . IR where i, the inclusion map, is a bundle
map. Also, if & : X > XXX :x-(xx); t : E->Xandp : F->X are
bundles, then d*(x X p) is the Whitney sum of = and p, denoted by

%t ®p, where t Xp ¢ EXF X X X 1is the cartesian product of n and p.

6.7 Theorem: If O—»x —»p -0 -0 is an exact sequence and

O->n —»>p splits, thenp x n ® p.

Proof: Gee Lang [3 . 52].
For example, if £ : X » Y is an immersion, we have T(f) : T, Ty,
-4
which factors through T Ty' Let f, denote the unique factor, so we

have the exact sequence

T*f

O —>
X

> fRT >y ——> O
v T

where v, = £*1 y/t*f(Tx) is the normal bundle of f. If

T*f

— * % s
0] > Ty > T Ty splits , then T Ty = T, ® v_.. However, the

f

splitting may not exist.

7. Partitions of unity

Let S be a paracompact space and {Ui] a locally finite covering

of S.
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7.1 Definition: An associated partition of unity of (Ui} is a

collection {fi} of real functions fi : Ui — R such that
(i) for all s € S we have fi(s)_z 0,
(i1) the support of f, is contained in U, end

(iii) for all s € S, :E ' fi(s) =1,
{

An outstanding problem on differential manifolds is the existence
of differentiable partitions of unity. However, the following is

known (see Lang [3, p. 30]).

7.2 Theorem: On a paracompact Cr separable-Hilbert manifold

every locally finite covering has an associated partition of unity of

r
class C .

7.3 Theorem: If X admits partitions of unity, then every exact

sequence O -t = p splits.
Proof: See Lang [3, P. 5l].

Thus if £ : X -» Y is an immersion, and X admits a partition of

£t If X is a submanifold of Y we will

write N(X) for the total space of v;» 1 : X « Y, and consider N(X)

unity, we have f*1_ =~ T_ 0 v
Yy X

embedded in £*T(Y) by some fixed splitting. The embedded image is a

sub~-bundle of f*Ty, called the complementary bundle.
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The following is a typical application of partitions of

unity for which we are indebted to John McAlpin.

T.4 Theorem: Every second countable ¢’ manifold

(without boundary) modelled on a separable Hilbert space

can be Cr embedded onto a closed ~“submenifold: of separable

Hilbert space.

Proof., Let {Ui,t?i)] be a countable atlas of the
manifold X, with <$1(Ui) the unit disk D of the model M,
such that the inverse images of the half-unit disk % D
cover X, Let g : H~ R be a C™® function which is zero

outside D and one on the closure of % D. Let

-1, 1
= { — :
vy ~Pi ( 5 D). Define

§ [g(@ (x)): P (x),8(¢g;(x))] if x e Uy

W X9 BxR o ox-y <

I

L 0 otherwise,

Clearly ’Pilvi is an embedding. Now let

mi =HXR, i = 1,2,..., and let f? denote the Hilbert

sum of the Hi' (See Dieudonne (2, p. 117])



I\
N

for definitions.) Define
-i/2
YolXaK:xa 2_ (2) / \yi(x).
i=1

As ﬂ\ki(x)ﬂ <2 in H X R, the sum above converges and the mapping is
defined into the Hilbert sum. Also, UYO(X)H <2in ¥, and YO(X) does

not contain the origin.

Note that Yo is an injective immersion, as every x € X has a
neighborhood, in a fact a Vi for some i, such that qri]Vi and therefore
YOIVi is an embedding. Let r : ' - 0 = #  denote inversion through
the unit sphere. As ‘l’o is an injective immersion into the 2-disk less
the origing:oﬂé=f? is an injective immersion into the complement of the
2-disk in # . Note that the image ¥(X) is closed in ¥ . For if
{Y(xn)} converges to a point y € ¥ , then {Yo(xn9} converges to a point
Yy, € T - 0. Thus for some i, {Yi(xn)] converges to a point y, € IH;- 0,
and there exists an integer N such that xn € Ui for n > N. Also
{@i(xn)] converges in D. But wi : Ui-a D is a diffeomorphism, so [xn}
converges to a point x € Ui' We conclude that ¥ : X » € is a closed
injective immersion of class Cr, and obviously Ft is a separsable
Hilbert space. But it is immediate that a closed injective immersion

is an embedding, so the proof is complete,

8. Differential equations

We shall now review the fundamentals of ordinary differential
equations. For details, see Dieudonne and Lang. Let X be a Cr mani-

fold end I'(T) the space of cross-sections of the tangent bundle

T 1 T(X) - X.
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3.1 Definition: An integral curve of y € I'1) is a C curve

c : (-a,2) »X : ¢t %, 8 > 0, such that for all t & (-a,a),

A cross-section y is also called a first order differential equa-

tion, and an integral curve a solution of 7 at X.

Observe that if (U,p) is a chart on X with® : U—>V < [E, then

7 induces a map y' : V - [E, the local representation of 7, and if

r
c : (-a,a) »X is a C curve, with @ o c(t) = v,, then ¢ is a solution
at X iff
avt '
se(t) = 7'(v,)

for all t € (-a,a).

8.2 Cauchy-Picard Theorem: If V is an open set of a Banach space

E,' : V>VX [E a ¢ cross-gection, and x € V, there exists an
(o) 2

€ > 0 such that for all positive a < g there is a unique Cr solution

c : (-a,a) »Vof 7' at X,
A stronger theorem in this direction is the following.

8.3 Local existence and uniqueness Theorem: it

y' : VoV X [Eis a ¢’ cross-section and x € V, there exists a neigh-

borhood W of X eV, aneg >0, and a ¢’ map § : (-g,e) X W=V such that

for all w € W, § (-g,€) X {w} is a solution of 7' at w.

In this situation we write Q= @l{t] X W, and {¢t} is a local

group of diffeomorphisms of W into V. The above globalizes as follows.

8.4 Corollary: Let y € I'(7) and © ¢ R € X be the set of all

pairs (to,xo) such that there exists an integral curve




¢ : (-ay2) »X : t - X, with ]tol < a. Then @ is_open, contains

{0) XX, and themap § : © -X : (to,xo) -0, (xo) is ofclass C .
)
Let @, = P({e}x X) n O

8.5 Theorem: The set {q)t] is a one-parameter group of diffeomor-

phisms iff © = R xX.

8.6 Corollery: If X is compact then ©= rxx

We turn now to second order equations. Let Ty and T denote the
tangent bundles of X and T(X), resp. Note that T, : (T X) » T(X) is

3lso a bundle.

8.7 Definition: A second order equation on X is a cross-section

v of 72 and T'rl. A base solution ‘with initial conditions vx e TX
’ o

a second order equation ¥ on X is a curve c: (-a,a)— X! t— X

of

t

such that c¢': (-a,a) — TX: t - th(l) is an integral curve of X

and c'(Oj = v

Xo'
If (U,CP,\Ifl) is a local bundle chart of 7, with
-1 -1 .
. 1] ! i
¥, + 7, U-QU X [E, and (Tl U,q;l,vz) a local bundle chart of T, with
Y, ’.'.’,;l(’l,'—l U) - (U X E) X E X (E, then a cross-section 7 € ]."(Te)

induces a local cross-section 7' : U X [E —» (U X E) X E X (E. If
7’(v,eo) = ((v,eo),el,ez), see T'L‘J'_ o' (v,eo) =(v,el), so y is a second
order equation only if e° = el. Further if c¢': (-a,a) — T(X) :

t - Wil(vt,eot) is an integral curve of a second order equation ')'/at
xlfil(vo,eoo), then the projected curve ¢ = T, © c¢' : (-a,a) » X :

t —acpnl(vt) is a base solution of y at cp-l(vo), and satisfies the equa-

tions:
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av
%
T (B =e

)
de;

7 (%)

1}

' o}

or equivalently,

d2vt dvt
— 1 —_—

9. Sprays

If A e R, let hy : T(X) - T(X) : v > Av.

9.1 Definition: A spray on X is a second order equation

y € (T, such that for all v € T(X) and A € (R.

(x)’
Tav= Moy (7))
Note that if ' : UX E- (UX E) X (E X [E) is a local
representative of a second order eguation, with
' (x,u) = (x,uzu,f(x,u))

then 7' is a spray on U iff
2
£(x,M) = A(x,u).
Now let 7 be a spray on X, and Bv(t) a solution of Y

at a point v € T(X). Let © < T(X) be the set of v &€ T(X) such that

Bv(l) is defined.

9.2 Definition: The exponential of 7 is the map

exp7 t O o5X v TX[BV(l)]. Also expl = exp’ ] TX(X),q © for

all x € X, and
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Exp : (D >X XX vy - (%, exp’ (x)).

Note that if X is of class Cr+2, then Exp7 is of class C'.

9.3 Theorem: D(exp;)(ox) is the identity mep of T (X).

Proof. First see that

(1) By (t) = lﬁv(lt).
v
For le(lt) is a solution of 7 at v, as
d - \
o [28,(8)[ =aTmy 7 [B ()] = y[B (¢)]

by the spray property, so (1) follows from the uniqueness of solutions.

Next we have

fl

(2) T [P, (8] = = [B, (1),

from (1), by taking t = 1 and A

t, and applying TX. Finally we see

that

D(exPZC)(OX) (V) = %ﬁc— [TXBtV(l)]t=O - %‘E [TXBV(t)]t=O

by (2), and thus

D(exp;) (0 )(v) =1, 0, )= v.

9.4 Corollary: There exists a neighborhood U of 0, & T (X)

such that expi ] U is a diffeomorphism onto a neighborhood of x € X.

Let 7o € F(Tx) denote the zero cross-section

2

9.5 Corollary: If X is Cr+ and paracompact, there exists a

neighborhood U of Im(yo)¢: §) such that Exp’ | Uis a ¢’ diffeomor-
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Im(yo) onto the diagonal.

Proof: See Lang [3, p. Tk].

Let X © Y be a submanifold, and £ : X - Y the inclusion map.
Then T(f) : T(X) - T(¥), and T(£)* [T(T(¥))] = T(T(X)). Thus if
Y € T(TT(Y)), 7 o T(f) factors thfough T(T(X)). We denote by

vy | Xe P(TT(X)) the unique factor,

¢.6 Definition: Let X < Y be a submanifold, and y € P(TT(Y))'

Then y is a spray of the pair (Y,X) iff y and y|X are sprays.

9.7 Theorem: Let Y be a C*'° manifold admitting C''+ partitions

of unity, and X < Y a closed submanifold. Then there exists a spray

of the pair (Y,X).

Proof: Let {Ui,Qi)} be a locally finite atlas on Y with associated

CI'Jrl partition of unity {gi}, and {(Vi,CPi)) an associated local bundle
chart on T(Y), v, = T;rl(Ui)' Then (Gi} is an associated C* 7T partition

of unity for ((Vi,CPi)], where G, = g, © T, | V,. Let {(wi,\x:i)} be an
. a1 .
atlas of T(T(Y)) associated to {(Vi,cpi)}, so W, = TT(Y)(Vi)' For each

i let 7, be the spray on U, with local representative in {(Wi,\'}fi)],
7i(u)v) = (u,v;v,o),

and 7y = E Gi7i. Clearly 7 is a spray on Y. Now we assume that
that the first atlas {(Ui,@i)] has been chosen such that whenever

N # & : U, i . . :
U, N XA, then®; : U, » B * B,, withg, [ uynv
Ui N V- El X 0. As X € Y is closed, this may always be done. Then
it is clear that ¥ | X is a spray on X, and thus 7 is a spray of the pair

(Y,X%).
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Now let X < Y be a manifold, and y a spray of the pair (Y,X).

Then we have the diagram

X —> (YY) ——————> TY
U f*T U T*f U
X Y
O, — O, — O
Exp! | X f?Exp7 Exp’
XXX ——— XXY' —_— Y XY

where ©f* = f*( @Y) and f*Exp’ is defined by

f*—'ExPy(X:Vf(x) ) = (X, eXP’y(’Vf(X) )).

9.8 Theorenm: If Y admits partitions of unity, then f*Exp7

is a diffeomorphism of Df* onto a neighborhood of X X X in X X Y.

9.9 Definition: If X « Y is submanifold, then a tubular

neighborhood of (Y,X) is a pair (n,f) such that x : E - X is a bundle

and f is a diffeomorphism from a neighborhood of the zero cross-section

75 &< E onto a neighborhood of X in Y.

9.10 Theorem: If Y admits partitions of unity and X is a closed

submanifold of Y, then there exists a tubular neighborhood of (Y,X).

Proof: As Y admits partitions of unity, so does X, so
f*(Ty) ~ Tx ® Vs where f : X - Y is the inclusion map. vThen if 7 is

a spray for (Y,X), (vf,f* Exp’ ) is a tubular neighborhood for (Y,X).



10. Vertical tangents

In this section the notion of partial derivetive is extended
to maps of Banach space bundles. The main goal is a global version

r
of the composition theorem, 3.7. Letn : E - X be a C bundle. If

TX : TX - X is the tangent bundle of X, the mapping Tn : TE — TX
factors through the induced ¢! bunale n*Ty ¢ *TX > E and we have
an exact sequence
®
7 (Tr)
* ———————
TE > 7 TX > 0.

Let VI(E) = Ker (x (Tx)).

10.1 Definition: The C' % bundle

Vi = Tg VI(E) : VI(E) - E is the vertical tangent bundle of E. The

* -
s-th tangent bundle is defined recursively VTE = Ker n (T(VT; l)):

Y-

s<r, acC S bundle.

Note that the vertical tangent bundle of E consists of the
subspaces of tangent spaces TeE tangent to the fiber through e, Ee,
that is, VT E=T (E ) < T E.

e e e e
Let F be a Cr manifold and f : E - F a mapping. For each

point e € E let fe denote the restriction of f to the fiber through

e, fe = flEe. Suppose for each e, fe is ¢®.  Then we meay define

the s-th vertical tangent of f, VI®(f), as the mapping

s s S 1 s 1 s
VI°(£) : VI°(E) -» T°(G) : (ve-,...,v:) ot EACATIROR
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10.2 Definition: A mapping f : E - F 1s vertically Ct iff

V‘I‘t(f) is defined and continuous, t < r, and wi:h respect to local
t
2

(second factor along fibers). It is of class (CS,VCt) iff it is
c® and vertically Ct, 0<s<t<r.
Let p: F-—> Y be another C' bundle.

bundle” charts on E, the local representatives are of class C

10.3 Definition: A mapping f : E -» F is fiber-preserving

]

iff there exists a mapping fB : X » Y such that the following diagram

comnutes:

E ——> F
s
f
Y

X B>

Let G be a C' manifold. Thenthe following is immediate.

10.4 Theorem: If f : E—F and g : F — G are of class

(CS,VCt), and f is fiber preserving, then g o f : E » G is of class

(c®,vc"), 0<s <t <

Let IM°(%t) and I'®(p) denote the Banach spaces of C° sections
of x and p, 0 <s<r, X =Y compact. If U ¢ E is an open set such
that n|U : U > X is surjective, let I'°(U) I'®(x) denote the open
set of sections with image iny. If f : U—>F is a CS fiber-pre-

serving mapping, let Q. denote the composition mapping induced by £,

£

Qf : FS(U) —»Fs(p) sty »>f e .

The local composition theorem 3.7 may be globalized as follows
(suggested by R. Palais [L4]).
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10.5 Omega lemma: If f: USF is of class(cS,vc'),

0<s<s+t, and X compact, then Q_ is of class Ct.

T

The proof is immediate from 3.8.

Let X and Y be compact ¢’ manifolds without boundary, and
% :E—>YacC bundle. Then if f ¢ 5?r(X,Y), we have an induced
*
mapping A; : Fr(ﬂ) >T(fx) :7 > y0 f. The following generalizes

and follows easily from the local composition lemma 3.5.

*
10.6 Alpha lemma: If f € CY(X,Y), then A_ : T (x) -» T (£ =)

il

is a continuous linear mapping.

1l. Manifolds of mappings

This section presents one of the main results of the notes,
the menifold structure of the set of C© mappings Cr(X,Y). This mani-
fold and its submanifolds are the most important non-trivial examples
of Banach manifolds in current use. The form of this presentation
is largely due to R. Palais Dq.

Let X be a compact o manifold, r > 1, and Y a Cr+S+2 manifold

admitting partitions of unity. We shall construct a CS differential

structure for Er(X,Y). The construction is easily generalized in

case X is a manifold with boundary (for definitions, see Lang [3, p. 30]).
If .4 TY —9T2Y is a Cr+S spray on Y, recall that there is

a neilghborhood G;Q < TY of the zero-section and a neighborhood

"5, © Y XY of the diagonal such that Exp ¥ : ®©, —» =,

is a C*°° qiffeomorphism, by 9.5.



If £ ¢ Y (X,Y), we have, as in section 9, the diffecmorphism

- o S , . . .
S = f*Exp: T Oy -—>tz$¢Jf."_’<2 where &{rdCX%Y is a neighbor

’

hood of the graph of f. If U, s < ‘ET(X,Y) consists of maps g such
)

that graph (g) < z@f,d’, then (Uf’é, [24_1) is evidently & chart

for €% (X,Y), where £

-1
0 : U - I (£er g - O g
PR (£21y) s g4 0@

We shall call such a chart natural for €*(x,Y), and the collection

of all naturel cherts the natural atlas.

+8+
11,1 Theorem: If X is a compact ¢" menifold and Y a C ° 2

menifold, admitting partitions of unity, then the natural atlas of

Er(X,Y) is of class C°,

Proof: Let (U ) and (Uf, IR ) be natural

£,4 %, 4

charts, and suppose Uf

) 4

4 = cpf,, nE It suffices to show that

-1 s S s
. s o { sm. that
cPf',4' o QPf,A. is a C” diffeomorphism. But it is clear tha

(Pf"é,’o (pf,4(7) = QF(’),)E Fo 7,

Py -1 4.
where F = |f'" Exp o f* Exp .

But 4 and &’ are Cr+S sprays, and £ and f' are Cr, so it is evi-

I‘+S)

dent that F is of class (C,VCT ' °). By the omega lemma 10.5, and

is of class C°., Clearly (QF)-l =90 1,

F

the compactness of X, QF

SO QF is a C° diffeomorphism.

Hereafter €r(X,Y) shall denote the c® manifold determined by

the natural atlas, if X is compact C* and Y is C*7°"2 and admits

partitions of unity.
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Note: If f ¢ E’r(X,Y), the tangent space T, CT(X,Y) may be

identified with I (£*TY).

Let X and Y be compact C' menifolds, snd Z a € 5" manifold

admitting partitions of unity. If f € <?r(x,Y), we have the induced

map

A, (f'r(Y,Z) - GT(X,Z) tg->gof.

11.2 Alpha Theorem: If O < s <r, then a, is of class c®.

f

Proof: Let (Ug,(pg) be a natural chart at g, so

Py Ug - Fr(@g) C I (g*TZ). Then there is a natural chart

r I, o .

i H % o

(an g:CPa g) with ¢ g’ U, g -»T (@OL g) & TV (f#g*TZ) determined
£ f f f f

by the same spray, ©0bfg = f*@g, and af : Ug —)L‘pafg. With respect

to these local charts the local representative of a_, is the map

f

r r
Af : (@Dg) -»T (®afg) + 7y = 7 o f.

By the Alphe lemma 10.6, Af is a continuous linear mapping, so a.f

is of class CS.
Now let X be a compact C° manifold, Y end Zz ¢ %2 manifolds

admitting partitions of unity, eand g : ¥ - 2 g ¢’ mapping. Then we

have the induced mapping
r = I
Wy : 7 XY) T (X,2) : £>gof.

11.3 COmega Theorem: If 0<s <r, and g is of class Cr+s,

then wg is of class CS.
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Proof: It is easily verified that the local representative of wg
with respect to natural charts is of the form
2, : I (Q,) -)I‘r(wgf*TZ) : y=Goy ,

vhere ©, C £#TY and ¢ : @ - w T*TZ is of class (c¥,c"*®), Thus

wg is of class C° by the Omega lemma, 10.5.

11,4 Theorem: If g : Y - Z is a closed crrs embedding,

1 <s<r, then wg e (x,Y) >€%(X,2) : f>gof is a closed C°

embedding.

Proof: As Z is of class Cr+s+2 and admits partitions of unity,

and g(Y) € Z is a closed submanifold, there exists a spray of the
pair (Z,g(Y¥)) by 9.7.

If £ ¢ E‘r(x,y), then wgf*TZ = (gof)*TZ = f*g*T7Z. But under
the hypotheses above g*TZ splits, and we may write g*TZ = TY & NY,
where NY is the normal bundle of g. Thus wgf*TZ = [#*TY & f*NY, and
rr (wgf*TZ) x> IY(£rTY) % T (£ey),

Now let (Uw £ CPw f) be a natural chart at .g_)gf € @r(x,z) deter-

mined by the spray 4 of the pair (Z,g(Y)), so

r r
@, e U, o = T(£*TY) x I'(£eN).

8
As 4 is a spray of the pair, it is immediate that this chart has the

submanifold property,

r 7 r
‘ngf : U"’gf Qa wg[ﬁ (X,Y)] - r(£*TY) X o0
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Thus wg is an embedding. It is of class CS by the Cmega Theorem 11.3,
and as g(Y) € Z is closed, and X compact, it is evident that

wg[@r(x,y)] < ©7%(x,2) is closed.

Meny other theorems of this type identifying distinguished sub-
manifolds of t?r(X,Z): suggest themselves, especially if X has boundary.
Several of these have been proved recently by Smale in connection with
calculus of variations in the large. Recalling the embedding theorem

7.4, we obtain a useful embedding of C (X,Y).

11.5 Corollary: If X is compact ¢* and Y is second countable

+
o s+2 and modelled on a separable Hilbert space, then C?r(X,Y) can be

CS embedded onto a closed submanifold of a Banach space.

For any Cr manifolds X and Y we have the evaluation mapping

ev : f?r(X,Y) XKX->Y: (f,x) » f(x).
We now examine the differentiability of this mapping.

11.6 Lemma: If x : E-> X is & ¢’ bundle and X is compact, then

the evaluation mapping
Ev : Pr(n) XX -E: (7,x) »y(x)

of of class Cr.

Proof: We shall show equivalently that Ev is of class (Cﬁfqg) in

the sense of the partial derivative rule, 3.6. First, it is evident

that Ev is continuous. Now if x € X, we have the partial mapping
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Ev, : I‘r(n) -»E :y -y(x),

which is a continuous linear mapping, thus D;B Ev = Ev, and Ev is of
class CZ. On the other hand for each section 7y € I‘r(n) we have the

partial mapping

Evy : X-F x-—->7(X),

or Evy = 7. Thus the partial tangent of Ev is

Ti Ev : I‘r(n) A TrX —->TrE : (7,v;) —>Tr7(v;)n

Hence if T'x : T'E —» T'X denotes the r-th tangent of the bundle x, and

™ . I‘r(n) —>I‘O(Trn) Ty —-)Try,

we see that Ti Ev is the composite of the restriction to T (I' (x)) of

the mapping

Ev' : IO(T%) X T'X - T'E : (&,p) - &(p)

following
TFX id : I' (1) X T°X - °(T%x) * T%%,

or T'Ev = Ev’ o (T % id). As T and Ev® are continuous, Ev is of

class Ci, completing the proof.

We suppose now that X is compact ¢" and Y is Cr+S+2 with parti-

tions of unity, so ©€©7(X,Y) is a C° menifold.

11.7 Theorem: If O < s <r, then the evaluation mapping

ev ér(X,Y) KXY : (f,x) - f(x)

if of class Cs.




Proof: We shall show equivalently that the enlarged evaluation
mapping

Ev : @r(X,Y) AKX X %Y (£,x) - (x,£(x))

is of class C°. If £ ¢ €Y(X,Y), and < is a spray of Y, we have the
natural charts (U,p) at f € er(X,Y) and (V,V¥) at graph (f) € X XY,
where

@ : U- I (£¥TY) g >0y

-1

9 (x) = (%50 (e(x)), end

Ir e . A =L

¥ o: Vo £ATY @ (x,y) - (£%ExpY) ~(¥).
With respect to these natural charts the enlarged evaluation mapping

induces & partially local representative Ev', which is & restriction

of the mapping
Ev' : I (£4TY) X X » £*TY : (7,x) - 7(x)

But this is a C° mapping by the lemma, 11.6.

37
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CBAPTER III

TRANSVERSALITY Of MAPPINGS

In this chapter the notion of transversality or general position
of mappings is used to obtain some standard results of differential
topology. Throughout this chapter X will be a manifold with boundary,
Y a manifold, W € Y a submanifold (Y, W without boundary) all of

class Cr.

12. Elementary properties

12.1 Definition: A C° mapping £ : X - ¥ is transversal to W at a

point x € X iff either £(x) g W, or f(x) = w € W and there exists a

neighborhood U of x € X and a local chart (V,¥) at w € Y such that

Y:VoE XF:VNAW- E XOQ,

A
o]

¥ is a diffeomorphism of V onto an open set of %, and

(o]

¥ o f | Uis a submersion, where 1, ¢ EXF - Eand

¢ E » F - F are the projections. The mapping f is transversal to

W on a subset K < X, fiK A W, iff f is transversal to W at every

e

point x € K, and f is transversal to W, £ 7 W, iff £|X 7R W.

For proofs of the following see Lang [3, P. 22].

r
12,2 Theorem: A C mepping f : X - Y is transversal to W at a

point x € X such that f(x) = w € W iff the composite mapping

T T
X

T X >TY>TY/TW
X W w w

is a splitting surjection.
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12.3 Corollary: If W < Y hes finite codimension, then a o

mapping £ : X » Y is transversal to W at a point x € X such that

£f(x) = w e W iff

Txf (TXX) + TWW = TWY.

12.4 Theorem: If a C* mepping £ ¢+ X - Y is transversal to W,

then the inverse image f“l(w) is a submenifold of X. If alsoW € Y has

finite codimension k, then f-l(W) C X has finite codimension k.

13. Openness of transversality

In the applications the following question arises. Let A ve a
space of mappings from X to Y, K € X a subset, and W < Y a submanifold.
Let 4 = {feal| £f|K A W). When is @ C & open? In this

K,w K,w

section sufficient conditions for openness are given.

13.1 Definition: A ¢¥ manifold of mappings from X to Y is a subset

< er(X,Y) which is a C* manifold such that the evaluation mapping

ev: AXX Y (£,x) = £(x)

is of class Cr.

Theorems 11.1 and 11.7 imply that the manifolds éfr(x,y) (Y of
class (321.".2 ) are ¢* manifolds of meppings. Also, any C° submanifold
of €F(X,Y) is a ¢ manifold of mappings.

We will need a fundamentel lemma on linear mappings. Let (E and
F be Banach spaces, and L( [E, [F) the usual Banach space of continuous
linear mappings from IE to ¥. Let IL(IE, [F) denote the subset of

splitting injections, SL( [E, IF) the subset of splitting surjections, and
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BL( E, ') the subset of linear isomorphism.

13.2 Lemma: The subspaces IL( E, F), SL( E, [F), and BL( E, &)

are open in L( E, [F).

Proof: For the proof that BL( E, ¥) is open, see Lang [3, p. 5].
Suppose T € IL( €, F), and M = Im(T). Then if K is a complement to M

in [F, we have the map T' € BL( B + K, IF) defined by
T : E+ K-> M+ K : (e, W - (T(e),k).
But BL( E + K, F) is open in L( E + K, ¥), and the linear mapping

PpiWE+ K F)>L(EF) : T >T'|E

is open, so there is a neighborhood n of T' in BL( £ + K, F) such that
o) E(n) < IL( B, F) is a neighborhood of T in L( €, IF). Finally suppose
T e SL( E, F), N = ker(T), and K is a complement to W in i{E. Then

we have the map T' € BL( [E, N + &) defined by
T': W+ Ko W+ F :(nk = (nT(K).
But again BL{ E, W + ) is open in L( E, W + IF), and the linear map

n‘F:L((E, W+ F)->L(E,F) :T »50T,
where x ¢ IN + F — (F is the projection, is open. Thus SL( [E, iF) is open
in L( E, F).

Warning: BL(E,F) is not group manifold,

13.3 Openness lemma: Let E and [ be Banach spaces, U € IE an

open set, A <« @ r(U, F) a C° manifold of mappings, K € U an arbitrary

subset, and ({K/S < (¢{ the subset of mappings f : U - [F such that
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such that f|K is a submersion. Then if K is compact, is open.

a
K/s
Proof: Consider the evaluation mapping
ev: A XU-F: (£,x) - £(x).

Then for every point (f,x) e (X X U we have the partial mapping
eve = evl{f] X U, which is identical to f as a mapping of U, and the

associated partial derivative
Dyev : AxU-L(E, F)

which is continuous by hypothesis. Let SL( [, IF) < L(IE, F) denote
the subset of linear maps which are splitting surjections. By 13.2
SL( E, F) is open in L( €, F). Thus 2f = [Deev] -1 [SL( E, F)] is open

in & x U. Now suppose f g ¢ Then by definition,

K/s’
(£} xXx < of . Ths if K € U is compact, there exists a neighbor-

hood Uy of £ & (X such that U, x K € &f , thus U, € Q and

K/s’
QK/S is open.

13.4 Openness theorem: If K< X is a compact set, W < Y

a closed submanifold, and AT C I'(X,Y) a C° manifold of mappings,

then the subset aK g=e sk M W) is open in (Z.
2

Proof: As W C Y is closed, there exists an atlas {(V,,V,)) of

Y such that if V. N W £ §, then

V. ¢ V. - E. X F, : V, N\ W (E, X0,
i i i i i i

the latter a diffeomorphism onto an open set. Suppose T € a KW'
)

Then for every x € K such that f(x) € V, m W, there exists a neighbor-

hood Ux of x € X such that if :t; : (Ei X iFi - EE‘i is the projection,
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n; oy, of | U, U > Fy
is a submersion. If f(x) jé W, there exists a neighborhood Ux of x £ X
such that f(Ux) N W =g, for W< Y is closed and the evaluation map
is continuous. As K is compact there exists a finite covering {Ui} of
K by open sets of X, such that for each i, f(Ui) is contained in an

element of the covering {Vj] which we will denote by v, (by reindexing

the cover (Vj]), and such that whenever v, N £ §, then

i
ﬂeowiofIUi.Ui—)lFi

. . . - e e a = ¥

is a submersion. Let Ki Ui n K. Then K, Q aKi,W’ but

the are open by 13.3, so Q is a finite intersection of
Ki,W K,w

open sets.

14, Density of transversality

In this section sufficient conditions for the density of trans-

versal maps are given.

14.1 Density lemma: If X has finite dimensionn, W € Y is a

closed submanifold having finite codimension g, A < &Y (x,Y)

S

S a

Cr manifold of mappings with r > max(n-g,0), and the evaluation mapping

is transversal to W at a point (f,x) e A x X, then there exists a

neighborhood U of £ e (L and a neighborhood V of x € X such that

GUV,W C CL{ is dense.

Proof: First suppose f(x) ¢ W. Then, as W is closed and the

evaluation map is continuous, there exist neighborhoods ‘L( of £ ¢ L
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V,W U

Now suppose f(x) = w € W. In this case the proof depends on the

and V of x € X such that ev(?«(’x VWV AW=4¢ so U

three propositions which follow.

Proposition A: If the evaluation map is transversal to W at (f,x)

and £(x) = w € W, there are neighborhoods U of f el and Vof xeX

such that every point g ¢ ‘U is contained in g p-dimensional submani-

fold Zg,OSPSq, such that evlzngxw.

Proof: By definition 12.1 there exists charts (Q(O,n) at £ e L,
(VO,QD) at x € X, and (UO,\!I) at w £ Y such that
W o U - (U =YL
(15 @V > B, o(V) = V!,
(iii) ev : ‘LIO XV, =U,
(1v) v :U > Fx B :U xW- Fxo0,
the latter a diffeomorphism onto an open set of F X 0, and
(v) a=ntoV o ev[‘?{o XV "’Z[O XV, - RY is a submersion,
where t : [F X §Rq - qu is the projection. Define
B=oao Inxq)l—l s 9 x V' > RY
o o
where ‘Lié X V(’) C E x R, Then by hypothesis DB(0,0) is a surjec-

tion, so there exists a finite dimensional subspace R <E, 0<p<q,

such that

(1) DB(0,0)( R® x E") = ®’%

Let ¥ be a closed complement of tRp < [E, and identify E and [F X IRp.

Then if ’)/'c') and %’(’J are neighborhoods of zero in & and !Rp,
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respectively, with 9/('3 X'Wc') U s we have
. 1 l 1 q 971 t ! 1Y n
B.“)/ox(woxvo)-»IR,Pox(woxvo)ch(IR X R,

and the first partial derivative of B with respect to the factor
(W! x V!) is surjective at (0,0), by equation (1),
(2)  D8(0,0)( B’ x R") = R%
But the partial derivative map
. ap oy 1 ptn g

DB : f))ox(woxvo)aL(tR s RY)
is continuous, and SL( ‘Rp+n, RY) < 1 lRP+n, RY) is open by 13.2, so
there exist neighborhoods Q)l', Wi, V. of zero in IF, ®?, ®",

respectively, with P X W, XV < U x‘M/c') X V!, such that
(3) D,B(0,0) + ¥y x (W) x V!) - sL( B"™, mY):

_ -1 1 ¢ 1 'y - -1 1
Now let U =1 (‘))l xwl) < U, and V=0 (Vl) < V.. For every
point g € WU with n(g) = (v,w) € F x {Rp, let = 1; = n_l({v] x")/f/i).
Thus I z is a p-dimensional submanifold in U , and equation (3)

implies that the restricted evaluation map

ev prV: prV—-)Y
g &S

is transversal to W.

For the second proposition suppose I P is a p-dimensional sub-
manifold of d, V an open set of X, and ¢ = elep X V is transversal
to W. Then W' = g'l(w) is a submanifold of codimension q of X Py V.
Let ¢ : W' -2 P denote the restriction to W' of the projection

s Pxvoz®,
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Proposition B: If o is transversal to g point £ € Z p, then f is

transversal to W on V.

Proof: If ¢ is transversal to (f}, then for every point
(£,x) € 2P x V such that £(x) = w € W we have by 12.3,
b
T a(T W') =T, 2%,
(f,x) ( (f,x) ) f
Thus in £ P x V, the tangent space at (f,x) is the sum
4 T z P =T W'+ T_V.
(W e )BT X V) =T W+ T
But by hypothesis the restricted evaluation map ¢ is transversal to W,
so by 12.3 again
. D N
(5) T, )8 (T(e, )~ x V)] + o0 = T Y.
Substituting (4) in (5) we have
(6) Txf(TXX) + T W= T.Y,
X ' g ? = T X . Th
as T(f,x)\S(T(f,x) W') < TWW, and T(f,x) )(TXV) Txf( < ) us

for every x € V such that f(x) = w € W, equation (6) holds,

co flVARW,
The final proposition is a well known theorem of Sard [5]. If

f :1X->Yis any Cl mapping, a point y € Y is a critical value of T

1ff it is false that £ A {yf{. Let X .C Y be the set of all criti-

cal values of f.

Proposition C (Sard): If £ : R® —ath is of class C with

r > max(s-t,0), then j(f < iRt has outer measure zero.

Now to prove the density lemma, see dim(S ¥ x V) = p + n,

codim (W') = q, so s = dim(W') = max(p+n-g,-1), and locally o: R° —RY,
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so t = p and max( s-t, 0) = max(n-q, 0). Thus the lemme Ffollows at

once from the three propositions.

Recall that a residual set in a topological space is a countable

intersection of open dense sets, a Baire space is one in which every
residual set is dense, and by the Baire category theory every Banach

manifold is a Baire space.

14,2 Density theorem: Let X be an n-menifold with boundary,

K < X any subset, Y a Banach manifold (without boundary), and W < Y

a closed submenifold (without boundary) of finite codimension g, all of

class €. Let X < & r(X,Y) be a C manifold of mappings and

= (£ e £|K AW}, If the evaluation map of (2
2

ev : AXX>Y: (f,x) - £(x)

o is

is transversal to W on K and r > max(n-g, O0), then 2

K,W

residual.

Proof: First, suppose K € X is compact and f € . Then by the

N

i=1 of

. . i,i
density lemma 1lk.1l there exists a finite set of pairs ((U,V))
neighborhoods U of £ e A and open sets V' of X such that {V1}1§=l

o o e N o,
covers K and for each i, "?lli c U " is dense. Let AT = NV U

vo,W i=1
and Ve MVl qpen UE .ﬂ Narl  is dense inU T and
i=1 v,W i=1l v
2
z{ < Z( « As every T e { has such a neighborhood U f,
V,W K,W

CZK WC ¢ is dense. By the openness theorem 13.k, a is also open.
2

K,W

Now let K & X be arbitrary. Then there is a countable covering

i
{K'} of K by compact sets, and from the above, (% ; € a is open

K-, W
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and dense for each i, so [\ (¢ ;  1is residual. Note ﬂ[_’) i < ¢
i K,W K,W

Next let {'.Mcx,] be a countable set of coverings '?,4& = {K;} such that

K,
'?{a = Li/ Kioo and Q ﬁ(,or, = K. Then for each o C’?ﬁ,m’w = Q CZKi,W
is residual, so CZK,W = Q QF'(@:W is residual.

In the density theorem the condition that W < Y be closed is
undesirable and unneccary, In fact the embedding e : W & Y can be
replaced by an arbitrary mapping £ : W - Y as follows.

Let X be a manifold with boundary, Y and Z manifolds (without
boundary), £ : X =Y and g : Z » Y differentiable maps.

Let A «< Y X Y denote the diagonal,
A= {(yl,yz) eYXY |y = y2~§-

Clearly & &€ Y X Y is a closed submanifold.

14.3 Definition: The mappings £ : X »>Y and g : Z - Y are

transversal at points x € X and z € Z iff the product

fXg:XXZ->YXYis transversal to A at (x,z) in the sense of

definition 12.1, The mappings are transversal on sets K < X and

Mz, f]k M g|M, iff £ x g|K xM /A A, and they are transversal,

£ Mg, iff £ x g A A

This definition displays an inherent symmetry of the notion of
transversality. The definition can obviously be extended to n-tuples
of maps having a common target. Further, to make the symmetry com-
plete one should let all sources have boundaries, in which case their
product would be a manifold with corners. All the considerations of

this section may be extended in both of these directions without
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substantial modiiication, but we omit these sophistications as they
will not be required in our applications.

For a final version of the density theorem, consider ¢" menifolds
of mappings (A< & F(X,Y) and @‘: < *(z,Y), X with boundary, Y and
Z without, X, Y and Z finite dimensional. Let K €« X and M < Z be

arbitrary subsets, and

a x & = (e e @aX B o[k A gm).
K XM
Let ev“ and Vo denote the evaluation maps of &« and @ , respectively.

1L, 4 Corollery: if ev, | x K }Faev@I@XM and

r > max(dim X + dim Z - dim Y, 0), then (X 2 Kxy < A xS is
residual.

This follows at once from 14.2 and 14.3. For a special case
generalizing 14.2, take G_’;to be a single map S - {g} in 1k.4. Then

ir A = {f e Q| fl|K N g|Z}, we have:
K,g

14,5 Corollary: If eva[(lxK ?),g;a{l_g_

r > max(dim X + dim Z - dim Y, 0), then {ZK C & is residual.
——— g ———————————————

3

If in 14.5 g is an embedding, and W its image, we obtain 1L.2 with

the condition "W closed" removed.

15, Jets

We shall give several applications of the density theorem, but the
first of these requires a digression on jets. Let X and Y be ¢’ mani-

folds (without boundary) and TkX = 'I‘(Tk'l X) the k-th iterated tangent
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bundle space of X. If f : X >Y is a Ck mapping, 0 < k <r, let

™ = T(Tk'lf)

: TkX ~>TkY denote the iterated tangent mapping.
15.1 Definition: Two mappings f,g € ka(X,Y) are k-equivalent

. k . kK . _ ok
at a point x € X, f?i'g’ iff TX £ = Tx

go

It is evident that k-equivalence implies p-equivalence for
0 <p <k. Thus we have the following local characterization of k-
equivalence, Let (U,p) and (V,¥) be local charts at x € X and y € Y,
f,g e C k(X,Y) such that f(x) = g(x) =y, £,8 ¢+ U= V, and let

f',g': U'.»> V' denote the local representatives of f and g, where
U' =49U, V' = v,

15.2 Lemma: The mappings f and g are k-equivalent at x € X iff
DPrt(x') = DPg'(x'), D = O,...,k.

15.3 Definition: If e € S(X,Y) and £(x) = y, let [ﬁ]?x 7)
2

denote thefﬁl-class of f. The set Jk(x’y) of all equivalence classes

--k . . ‘~

ij(x ) with k fixed and f ¢ €T‘K(X,Y) is the k-jet bundle of X and Y.
2

The natural map

o Jk(x,x) X XY : [f]%x v) - (x,y)

is the k-jet projection. If f & © k(X,Y), the induced mapping

jkf + X aJk(X,Y) LI [f.]l({x,f(X))

is the k-jet extension of f.

(Beware: The jet bundle is not a Banach bundle.)

We shall describe some natural local charts for the k-jet bundle.

Let (U,p) and (V,¥) be local charts on X and Y, respectively, ¢:U - G,
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V: Vo F. Iffe ek(x,y), let ' ¢ € k(U;V') denote the induced
1{)"'

local representative of f. Let W = (x l(U X V), and

M :W-UXVXLE, F) X ... xLl;( E, F) :
: [fj?x,y) - (x',y',DEN(x"), ou. , Dkf'(x'))
where (x,y) e UXV, y = £(x), x' = ¢(x), and y' = ¥(y). By lemma 15.2
it is clear that n is a bijection, and n(W) is an open set in the Banach
space E X F XL(E, F) X «ss X Li(lE, F). The pair (W,n) is a natural
local chart for the set Jk(X,Y). If (Ui,wi) and (Vu’va) are C° atlases

for X and Y, respectively, then the associated natural local charts

(Wla,yfa), where W% = (zrk)-l(Ul X Vm), comprise a natural atlas for
Jk(X,Y). .
15.4 Theorem: If X and Y are C and k < r , then every natural

atlas of the k-jet bundle Jk(X,Y) is of class ¢ %,

Proof: Let (U,@l) and (U,®2) be local charts X with

@i t:U- (B i

Y 2V F,i=1,2, Let W= (nk)'l(u X V) and

1,2, and (V,Wl) and (V,We) local charts on Y with

ny WoU'X VX LOE, F) X.ouX LI;( €, F), i = 1,2,

the local chart mappings defined by [@l,wl} and {me,we), respectively.
It is sufficient to show that the map & = n2 ol nl_l is of class Cr-k

in the two cases: (i) ¢, =9, and (ii) ¥y = ¥

(1) Iet £ & THXY), (V) = U, ¥, (V) = V', y,(V) = V",
mdf’:U'eV'mdF’:U'aV"ﬂmimhwdlmﬂgmmE%MEﬁwsof
f, so f" = B o £', where B = ¥, © Wl'l. Then if for
§ U X VX L(E, F)X o XES(B,E) » U' X V' x L( E, F)x...xL5( E, F)

we write & : (u',v',zl,...,ﬂk) —>(u',§o,...,§k), and if £'(u) = v',
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Dpf'(u') = ﬂp, we have gp = Dpf”(u'), or from the composition mapping

formula 3.3,

M

] ' - J ' < APy :
_E,p(u ,V ,ﬂl,...,ﬂk) = D ?(v ) o 2... cj(ll,...,lk)ﬂ. 8...8 2,

ll k

so §P is of class C* P, and & is of class ok,

(ii) With f as above and cpl(U) = U', cpz(U) = U", we have
£f' 2 Ut >V, " 2 UM V', and £ and £' o a-l, where a = @, © @l_l.

Assuming DPf'(u') = ﬂp we have §p = DPf"(u"), or from 3.3,
Y

—— p -1

N\ £, 0o P, @ "(afu'
5o Rl

gp(u',v|,£l,o [ ,2k) =

Cu.

and thus §p is of class C° P and & of class oK,

Consider next the k-jet extenstion. If £ & €% (X,Y) and k <r,
jkf : X —)Jk(X,Y) has local representatives in natural charts of the
k - 1
form (u',f'(u'),Df'(u'),+s.,D £'(u')), so clearly jkf e’ l(X,J{(X,Y)),

and we may regard the k-jet extension as a mapping

. r=K

F T, Y) >R, (%, ).

Let X and Y be 02r+2 manifolds admitting partitions of unity, X compact,

so by 11.1, €7(X,¥) ana €7 F(x,s5(x,1))are ¢© and ¢ menifolds,

respectively.

15.5 Theorem: The k-jet extension is an embedding of G?r(X,Y)

into &7k, d5(x,1)).

Proof: It is sufficient to consider the case in which Y is a

Benach space. Then J(X,Y), ©7(X,Y) ana € T %(x,5%(X,¥)) are Banach
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spaces and obviously jk is a continuous linear map. We have the projec-
. k k
y © XXY->Y, and if Ty = 7y O, see

that n§ ) jk(f) = f, s0 jk is injective, Finally, the mapping

tions ﬁk : Jk(X,Y) - X XY and x

€T Y)) TR R,Y) R -m§ oF
1
Y k =T
is clearly a continuous linear surjection, so if F = j f, £ e € (X,Y),
w‘i (F) is a closed complement to jk[fir(X,Yﬁj at F. Thus jk is an
embedding.

It is easy to generalize all of the sbove to the case in which X

and/or Y have boundaries. In what follows we take this for granted.

16, Applications

We turn now to the first application of the density theorem: the
Thom transversality theorem. Let X be a C' manifold with boundary and
Y a ¢* manifold (without boundary). The set tf)r(X,Y) may be given a

topology as follows.

16,1 Definition: The Cr topology of compact convergence on

Cfr(X,Y) is the topology induced by j° from the compact-open topology

on € °(x,55(x,Y)).

Hereafter ’f?r(X,Y) denotes the space of o maps with the ¢

Laer+2
2

topology of compact convergence, If X is compact and Y C r

- the C
manifold topology of'f?r(X,Y) is the same as this new topology. It is
well known that f?r(X,Y) is a Baire space.
2r+2 . r-k .
Suppose now that X and Y are C manifolds, and W a C mani-

fold, all finite dimensional, X with boundary, Y and W without. If
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Fe ff’r-k(w,Jk(X,Y)), let CEE;(X,Y) denote the subspace of mappings

£ & € T(X,Y) such that j5¢ A F.

16.2 Thom Transversality Theorem: If

r > max {dim X + dim W - dim Jk(X,Y), 0},

then the subspace & ;(X,Y) < & T(X,Y) is residual for every e

mapping F ¢ W — Jk(X,Y).

Proof: First we suppose X is compact so that & r(X,Y) is a
manifold. Let ({ = jk[(?r(x,y)]. From 15.5 it is clear that @ is a
cr-k menifold of mappings in the sense of 13.1. Furthermore , &
standard computation with a local chart and a Cr characteristic func-
tion shows that for all (jkf,x) e L x X,T?(ev)(jkf,x) is surjective,
so the evaluation map is transversal to any mapping F : W —>Jk(X,Y)-
Thus if r > mex {dim X + dim W - dim Jk(X,Y), 0}, the openness theorem
13.4 and the density theorem in the form 14.5 imply that Czk,F <
is open and dense.

Now let X be arbitrary, [Xl} a countable covering of X by compact

manifolds with boundary, and
i XKrer,,i k -
Q@ =T, I %) .
Then we have the restriction map

p, s A >’ o 3 ot

Clearly p. is continuous, and hence (2 . = p?l(Cll. ) is open
i i i i
X, F X, F
and dense in (€. But (4, _ = N Q@ . , 08 _ is residual in (L.
x,7 =)L X,F

J

As an application of the Thom theorem we shall show that for
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manifolds of appropriate dimensions any mepping may be approximated by

an immersion (see 4.5 for definition). Let X be a C2r+2 manifold with

Br+2 enifold (without boundary).

boundary, of finite dimension s, Y a C
of finite dimension t, and In(X,Y) < € T(X,Y) the subspace of immer-

sions (Cr topology of compact convergence).

16.3 Whitney Tmmersion Theorem: If r > 2 and t > 2s, then

Im(X,Y) is residual in €7 (X,Y).

Proof: Let W' C Jl(X,Y) be the set of jets jlf(x) such that in
a natural chert Df(x) has rank, k = 0,...,s. This condition is inde-
pendent of the chart used, and Wk is seen to be a submanifold of
codimension g = st - k(s + t - k). Let W = W wo ... o uth
Then £ € @ *(X,Y) is an immersion iff jlf(x) nW=g@ The smallest
of the codimensions {qo,...,qs_l} is clearly A1 = t - s+ 1. As
r>2 and t > 2s, we have s - = <s - g1 = 2s -t - 1< -1, so
(1) r>s - g for all k = 0,...,s - 1, and (2) jlf LR implies
jlf(X) AW = % for all k = Oysva,s - 1. From (1), the Thom transver-
sality theorem 16.2 implies that the set f?a(X,Y) of mappings
£ & ©F(X,Y) such that j'f A WX for all k = O,...,s - 1 is residual.
From (2), 6’;;(}(,1() - IR(X,Y), as §°f A W implies j£(X) AW = §
for k = 0,¢0., s - 1.

Next we give a direct application of the density theorem. Let X
be a compact ¢’ manifold with boundery, of finite dimension s, Y a
¢®**2 panifold (without boundary) of finite dimension t, so that
@Y (X,Y) is a ' manifold of mappings. Let Inj’ (X,Y) € € (X,Y) be

the subspace of injective mappings.
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r
16,4 Theorem: If X is compact and t > 2s + 1, then Inj(X,Y) is an

open and dense submanifold of er(X,Y).

Proof: Let (1 be the diagonal of €7(X,Y) x €%(X,Y), A, the

diagonal of X X X, K = X X X\A _, and & ,, the diagonal of ¥ X Y. Then

X Y

the bijection

d @ Gr(x,y) >l f-(£,F)
clearly induces a structure of Cr manifold of mappings on . As
t > 2s + 1, we have dim(X X X) - codim(a Y) =25 - t<€ -1, so
(1) r > aim(X X X) - codim(A
aK,A

Y) for all r, and (2)

]

¢ = [T (6, 0)], as (£,8)[KA A  implies (£,0)(KINA ¢ = §.

From (1), the density theorem 14.2 and the openness theorem imply that
aK-A < (1 is an open and dense submanifold. As & : € Y(x,Y) » &
A 4

is a diffeomorphism by definition, the theorem follows from (2).
Let X and Y be as sbove and Em' (X,Y) & € (X,Y) the subspace of
embeddings (see 4.5 for definition). As an injective immersion of a

compact manifold is an embedding we obtain the following immediately

by intersecting 16.3 and 16.L.

16.5 Corollary: If r >2, t >2s + 1, and X compact, then

Emr(X,Y) is an open and dense subtmanifold of & I‘(X,Y).

This result may be generalized for noncompact source X by means

of this easy consequence of Sard's theorem.
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16.6 Lemma: If X is a paracompact finite dimensional ¢’ manifold

(without boundary) and r > dim (X), then there exists a countable set

i
{X"} of compact finite dimensional Cr manifolds with boundary such

that aim (X') = dim (X), X < int(X*™) ana U = X,

Proof: First, note that on any C' manifold (without boundary)
X, non-empty, with counteble base and admitting Cr partitions of unity,
there exists a proper positive ¢© function. For if {Un]oo and
{Kin}°° are countable coverings of X with Un open, Kh co;;ict,

K C?=§ﬁ+l and gnc: U, for all n, and {gn} is an associated C' parti-
tion of unity (gnIKn =1, gnIX NU =0, Zg =1), then f = Z ng 1is
positive, ¢’ and proper, Next, as r > dim X - 1, the critical values
of £ are nowhere dense in (R by Sard's theorem (4.1C) so for each
positive integer i there is a point y, € (i-1,i] such that £ M {y;3
so f-l(yi) is a submanifold of codimension one in X. Let v - [p,yi]
and Xi = f_l(Yi). As f is proper Xi is compact, so Xi is a compact

menifold with boundary dX° = £ 2(y0), end dim (X°) = dim (X).

Combining 16.5 and 16.6 we obtain this classical result.

16.7 Whitney Bmbedding Theorem: If X is a paracompact Cr manifold

(without boundary) .of finite dimension s, Y a C2r+2 manifold (without

boundary)of finite dimension t, r > max (dim X, 2) and t > 2s + 1,

then Em (X,Y) < ¢ 7(X,Y) is residuel.

17. Nondegenerate functions

As a final application of the Thcm theorem we shall show that any

differentiable function on a manifold can be approximated by a
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nondegenerate function. To define nondegenerate functions we will need

two new notions: the linear connector and the covariant differential.

Let X be 2 €72 manifold and o : E —X a C* '+ bundle. Then we have the

obvious Cr+l bundles = t TXOE->TX, o, : TX 8 E-E, and

X E

To : TE —» TX.

17.1 Definition: A ¢’ connector of ¢ is a ¢t mapping

I'': TX ® E - TE which induces

(a) an exact sequence O — x_, — T, of bundle maps, and

B E

(b) a bundle map xn,. - To.

X

A Cr linear connector on X is a ¢’ connector of the tangent bundle of X.

Differential geometers will see that every connection is the image
of a unique connector. Also, the local representative of a connector
is the analog of the classical "components" of the corresponding connec-
tion. In fact if U « [F is an open set of a Banach space, & a Banach
space, E=UX &, and 0 : E -» U the obvious local bundle, then a connec-

tor ' ¢: TX ® E - TE has the form

P:UX(FXx6)>(UXE) X(FXE) :

: (e;f,g) > (e,e3f, (' (e3f,8))

o

where l'"(e) is bilinear. Thus it is easy to construct connectors using

partitions of unity, proving the following.

17.2 Lemma: If X is a Cr+2 manifold edmitting partitions of

unity and 0 : E->X is a Cr'":L bundle, then there exists a ¢’ connector

O—i‘_ 0.
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For the second notion, let X be a ¢’ manifold and F a Banach
space. If f g C"‘T‘l(x, (F) then Tf : TX » T [F. But T{F = IF X |F, where
(vl x IF = T, F. Let Ty} F X IF - IF denote the projection onto the

second factor.

17.3 Definition: If f & & (X, IF), the mapping

VE = Ty O If : TX » [F is the differential of f. Similarly, if

2 <k<r,

“'~7kf .—.v(vk'l f) ™% - F

is the k-th differential of f. If I : TX ® TX — T2X is a Cr"2 linear

connector on X (r > 2) then the map

I'y2

Vf=v2foI‘:TX®TX-—->IF‘

is the second covariant differential (determined by I') of f.

We now turn to real-valued functions.

17.4 Definition: If f e C’l(X,{R), then x € X is a critical point

of f iff VfITXX is zero.

Suppose X is C*'2 with ¢¥ linear connector T, and £ & € 2% R).

If x € X, let H.f = 'V °f|T X @ T_X.
X X X

17.5 Lemma: If x is a critical point of f, then erf is a

symmetric bilinear form on TxX independent of T, If X < IE is an open

set of a Banach space, then Hgf = Def(x).

Proof: It sufficed to prove the final assertion. Here
Vf : XX E-> R : (x,e) » Df(x).e, so by the partial derivative rule

3.6,
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2

Vf : (Xx EB)x (EX ) » R

2
: (x,el;ez,eB) - Df(x) . ey + D f(x) . (el,ea).
We have already seen that

P:XXx(EX EB)>(Xx €)X (EX E)
: (x;el,ez) —a(x,ee;el,P3(x;el,e2))
so that for every x € X,
H f(x;e,,e.) = DE(x).T. + Dof(x)(e.,e.)
x T2 3 2771

from which the proof is immediate.

17.6_Definition: If £ eC T™3(X, R) and x € X is a critical

point of f, the Hessian of f at x is the form

Hf=Hf :TXXTXo R
X X X X

defined by any Cr linear connection I'+ A critical point x € X of f is

nondegenerate iff fo is nondegenerate (induces an iscmorphism

*
H, fL : TxX —9(TXX) ), and £ is a nondegenerate function iff every cri-

tical point of f is nondegenerate.

Note that nondegenerate critical points are defined here only for

3

C” manifolds modelled on self-dual Banach spaces and admitting Cr

partitions of unity. However nondegeneracy is a local property, and
the Hessian can be defined more generally using a neighborhood of the
critical point rather than the entire manifold.

Now let X be a finite-dimensional C3 manifold. Then our final
application of the Thom theorem is the following (originally proved

by Thom).
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17.7 First Theorem of Morse Theory: If dim X > 2 and r > 3 ,

then the subspace (f’§D(X,\R) < &Y(X, R) of nondegenerate functions

is residual in the ¢~ topology of compact convergence,

Proof: Let W < JE(X,!R) be the set of 2-jets j2f(x) having local
representatives (x',Df'(x'),D2f'(x'))such that Df'(x') = O and sz'(x')
has rank less than n = dim X, This condition is clearly independent of
the local chart used, and W is a finite union of submanifolds Wi of co-
dimension 3(n - 1) + i = 9, i =1,2,... . Asmax (n - a5 0) =0
for all i ifn>2, r - 2 >max (n - qi,-O) if r > 3. Thus by the Thom
theorem 16.2, the subspace €?§(x, R) < & T(X, R) of meppings f such
that 3o A w5, 1= 1,2,s44, is residual. But if n > 2,

codim W' = 3(n - 1) + 1 >n for all i, so j°Ff M W' all i implies

i

it

.2
J7f N W =10, and £ is a nondegenerate function.

While on the subject of nondegenerate functions we may give a
characterization of the behavior of a function in the neighborhood of
a nondegenerate critical point. As the characterization is local it
suffices to consider functions on a Banach space, and the form we give
is based on a letter from R. Palais [h]. Let IE be a self-dual Banach

space and U a neighborhood of the origin.

17.8 Lemma: If f ¢ f?3(U,(R) has the origin as a nondegenerate

critical point with Hessian Hof, there exist neighborhoods V, W < U

of the origin and a Cl diffecmorphism @ : V -» W, ¢(0) = 0, such that if

x € V, then f£(o(x)) = Hof(x,x).
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Proof: Applying Taylor's formula [2, p. 186] we may write
f(x) = Bx(x,x) where for each x € U, Bx is the symmetric bilinear form

11

N 2
BX--fj t D7 f(st x) ds dt.

o o©
Let Bx : E - (E* denote the linear map induced by Bx' As BO = Hof
there is a neighborhood Ul < U of the origin such that if x ¢ Ul’ Bx
. . . -1 .
1s an isomorphism. Let T = ﬁx o) BO for each x ¢ Ul' As 7, is the

identity there is a neighborhood U2 <. Ul of the origin such that

o = 71/2

« % is defined for each x ¢ U2 as a convergent power series in

I- 7o Let ¢ U, » E be defined by 9(x) = on;l(x). Then as

B :U, - L(E, E*) : x » B, is of class Cl, so is

7 3 U, - Laut( E) : x-y eand o U, - Laut( ®) : x—»>a . Thus ¢ is
ofclass Cl, and in fact its derivative is easily seen to be

Dp(x) = Ot;{l + Da-l(x)-x .

Hence Dp(x) € Laut( ), and as Laut( E) « L( &, iE) is open and Iy is
continuous, there exists g neighborhcod U3 <. U2 of the origin such
that @ U3 - E is a local chart., Let W = cp(U3) NnUand V = cp'l(w).
Then ¢ : VoW is a Cl diffeomorphism, and we shall show that
£(e(x)) = B (x,x).

First, note that as Bx is symmetric, BX is self-adjoint (we iden-
tify [E and (E** by the canonical iscmorphism). Also Bx 07, = Bo
cleerly, so BX o 7x is self-adjoint, or BX o) 7x = 7;0 B,x' Furthermore,

as onx = 73‘(/2 is a convergent power series in I - 7x’ it follows that

Bx oa =oafo BX Thus 7% o Bx Bo or a¥ o (ax o Bx) Bo or
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-4 = o i
a® o BX o BO, so the diagram
[0k,
% X T
Tso Tax
“x
E > [E

commutes. Finally, we see that

£(x) = By (Px)oox = B (o 0 9x) «(a, o @x),
= B (x)x.
Thus fopx) = Hof(x,x).

In the case [E is a Hilbert space a further reduction can be
achieved by a linear change of local chart, and the following corollary

obtained.

17.9 Second Theorem of Morse Theory: If T e C?S(U,IR) has the

origin as a nondegenerate critical point, there exist neighborhoods

%Wcwamoﬂ@%a&dﬁ%mmﬁm@:VeM¢®)=@mﬂa

direct sum decomposition E

El ® Eb, such that if Xt %, € v,

Proof: The proof, an exercise in spectral theory, is taken from
Palais Bﬂ. The spectrum of A splits into two portions, to the left
and to the right of O on the real line. Taking the characteristic func-
tions of these portions and applying them to A gives us two projection

operators P, and P, which commute with A and such that Pl + P2 =1,

1 2
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2 2 N .
PlPE = P2Pl = 0. Also, Pl = Pl’ and P2 = P2, and P, P2 are symmetric.

Thus

(x,x) = (¢, Ax,x) + (B, Ax,x)

= (A P X,P X )+ (a Py, Byx ).

In this way we have split our Hilbert space into two complementary sub-
spaces such that f is represented by the positive definite operator
PlA = AP]_ on the first, and the negative definite operator P2A = AP2 on
the second. Finally, we put f in normal form. Say f(x) = <Ax,x> where
A is positive definite. We make the change of chart V¥(x) = At x
which transforms f into the square of the Hilbert norm. If A is nega-

tive definite, we apply the same argument to -f.
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